
Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

Generative Adversarial Networks for Image

Upscaling

Ammar Rasyad Chaeroel (13521136)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): ammarasyad@gmail.com

Abstract—The balance between image quality and storage

space/bandwidth is a long-standing issue to balance. To have

higher image quality, more storage space is needed, therefore if the

image is shared across the internet, more bandwidth is needed. Old

images are also an issue, where image quality was not up to par

with current era technology. Researches on image upscaling are

currently ongoing, with technology and artificial intelligence

maturing. The use of generative adversarial networks in image

upscaling compared to convolutional neural networks are starting

to pick up pace, with better results and efficiency.

Keywords—image processing, artificial intelligence, generative

adversarial networks, image upscaling, image super-resolution,

image restoration

I. INTRODUCTION

An image is a way to convey information to the public.
Information that cannot be conveyed through text or audio. It is
important that this information can be received well and the
point of the message is clear. One way of ensuring this is image
quality, more importantly image resolution. Aside from images
purely for comedic purposes shared on the internet, blurry or
pixelated images can hinder the process of spreading
information.

It is not as easy as capturing or creating images with the
highest resolution possible. One of the most common vectors for
sharing images, the internet, has wildly varying bandwidth.
People may not have the fastest internet connection to download
multiple large images. It is important to make sure that images
are also accessible. There are cases where the source image
simply does not have a high resolution, as is usually the case for
images from decades ago. To solve cases where the source
image does not have sufficient resolution, image upscaling is
used.

Image upscaling is the act of increasing the resolution of an
image by interpolating details from existing details on the image,
instead of simply resizing the image to a higher resolution,
which has the opposite effect of making the image blurrier. One
method of upscaling is called bicubic interpolation, which is not
always ideal. Bicubic interpolation has its limits, and at a certain
point the amount of detail “created” is not significant to
improving image quality. In recent times, better methods of
upscaling have been discovered through the use of artificial

intelligence, particularly using a Generative Adversarial
Network (GAN).

 Generative Adversarial Network is a machine learning
model that can be used to generate new details. In such network,
two neural networks contest with each other in a zero-sum or a
min-max game, where one network’s “win” is the other’s “loss.”
The winning network is called a generator, and the losing
network is called a discriminator.

A generator is the neural network in which its input and
output are set up manually, while a discriminator is exactly what
the term implies—it functions as a classifier. For image
upscaling, the generator tries to generate an upscaled image, or
rather generates the additional details to upscale an image, while
the discriminator distinguishes upscaled images from real
images.

With GANs, while it is not the only way to effectively and
efficiently upscale an image, low-resolution images can be
enhanced to make an image look better.

II. THEORETICAL BASIS

A. Images and Super Resolution

Images have a specific resolution with its own file format.
Each image file format has its own way of encoding information
to minimize space while maintaining image quality, or at most
compromising details that are visually indistinguishable.
Formats like JPEG, PNG, WebP, HEIC/HEIF, AVIF, etc. have
their own quirks, namely in their compression and encoding
methods.

JPEG is the most commonly used image file format, both on
the internet and what’s commonly produced by cameras. A
phone camera outputs a JPEG file, although most modern
phones have the option to switch to HEIC for better compression
and image quality relative to its storage space consumption.
JPEG uses a lossy compression method, which sacrifices a tiny
bit (almost visually indistinguishable) of detail, of which can
never be recovered when decoded. PNG on the other hand uses
lossless compression, where no detail is lost. The cost of lossy
compression file formats is compression artifacts. In the case of
lossless compression, it is storage space.

Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

Figure 1 JPEG compression artifacts

Super-resolution or image upscaling is a way to reduce these
artifacts and other image degradations to increase image
quality—in other words, increase the resolution of the image.
While increasing image quality does not always mean increasing
image resolution, super-resolution aims to achieve both. The
basic method is bicubic interpolation, where it interpolates new
pixel values based on a weighted average of neighboring pixels.
While it may achieve great image quality in certain cases, it
doesn’t apply to every case. There are limits to bicubic
interpolation, and with artificial neural networks, another way is
formulated to better increase image quality.

B. Generative Adversarial Network

As previously mentioned, a generative adversarial network
is an artificial neural network model that can be used to generate
new details, in this case for image upscaling. It is not the only
neural network that can upscale an image, as there are other
methods such as convolutional neural networks (CNN),
specifically SRCNN. Upscaling an image is also known as
Single Image Super-Resolution (SISR). A GAN model for
upscaling images is called a Super-Resolution Generative
Adversarial Network (SRGAN).

The goal for a GAN is to reconstruct a high-resolution image
from a low-resolution input. What makes GANs different to
SRCNNs is that SRCNNs assume an ideal bicubic down
sampling kernel, which is different from real degradations where
all sorts of noise, artifacts, compression, etc. come to play. A
super-resolution image ISR is reconstructed from a low-
resolution image ILR, which is a low-resolution version of its
high-resolution image IHR. IHR is only available during training.
In other words, during training there are two datasets: low-
resolution images and high-resolution or ground truth images.
The aim is to train a GAN model to be able to reconstruct an
image with similar image quality to the ground truth images.

There are two neural networks in a GAN model: the
generator and discriminator. A generating function G is trained
to estimate for a given low-resolution input image its
corresponding high-resolution or ground truth counterpart. A
generator network like a feed-forward CNN 𝐺𝜃𝐺

 parameterized

with θG. θG = {W1:L;b1:L} which denotes the weights and biases
of an L-layer deep network and is obtained by optimizing an SR-
specific loss function lSR.

For training images 𝐼𝑛
𝐻𝑅 , 𝑛 = 1, … , 𝑁 with corresponding

𝐼𝑛
𝐿𝑅 , 𝑛 = 1, … , 𝑁, the following equation is solved:

 �̂�𝐺 = 𝑎𝑟𝑔 min
𝜃𝐺

1

𝑁
∑ 𝑙𝑆𝑅(𝐺𝜃𝐺

(𝑁
𝑛=1 𝐼𝑛

𝐿𝑅), 𝐼𝑛
𝐻𝑅) (1)

where lSR is the perceptual loss function.

A discriminator network 𝐷𝜃𝐷
 is defined, in which to solve

the adversarial min-max problem:

min
𝜃𝐺

max
𝜃𝐷

𝔼IHR~𝑝𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅)[log 𝐷𝜃𝐷
(𝐼𝐻𝑅)] +

 𝔼ILR~𝑝𝐺(𝐼𝐿𝑅)[log(1 − 𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝐻𝑅)))] (2)

It allows one to train a generative model G with the goal of
fooling a differentiable discriminator D that is trained to
distinguish super-resolution images from ground truth images,
which in turn allows the generator to create solutions that are
similar to ground truth and thus difficult to classify by D. This is
in contrast to solutions obtained by minimizing pixel-wise error
measurements such as the MSE. This is the basic
implementation of an SRGAN model.

There are various enhancements to the SRGAN model,
namely ESRGAN (Enhanced SRGAN) and Real-ESRGAN,
which in itself is an improvement to ESRGAN. ESRGAN
improves upon SRGAN by introducing the residual-in-residual
dense blocks (RRDB) to make the model more powerful and
easier to train, and removing batch normalization layers which
were used in SRGAN. The discriminator is replaced with a
relativistic average GAN (RaGAN) to judge whether one image
is more realistic than the other as opposed to classifying which
image is real or fake. Perceptual loss is improved by using VGG
features before activation instead of after as in SRGAN.

III. IMPLEMENTATION AND RESULTS

In this paper, the implementation that will be used is Real-
ESRGAN, which is an extension of the ESRGAN model trained
on pure synthetic data. A high-order degradation modeling
process is introduced to better simulate real-world degradations.
It uses the ESRGAN generator which is a deep network with
multiple residual-in-residual dense blocks and a U-Net
discriminator with spectral normalization.

The RRDB network architecture used by Real-ESRGAN is
as follows:

class ResidualDenseBlock(nn.Module):

 def __init__(self, num_feat=64,

num_grow_ch=32):

 super(ResidualDenseBlock,

self).__init__()

 self.conv1 = nn.Conv2d(num_feat,

num_grow_ch, 3, 1, 1)

 self.conv2 = nn.Conv2d(num_feat +

num_grow_ch, num_grow_ch, 3, 1, 1)

 self.conv3 = nn.Conv2d(num_feat + 2

* num_grow_ch, num_grow_ch, 3, 1, 1)

 self.conv4 = nn.Conv2d(num_feat + 3

* num_grow_ch, num_grow_ch, 3, 1, 1)

 self.conv5 = nn.Conv2d(num_feat + 4

* num_grow_ch, num_feat, 3, 1, 1)

 self.lrelu =

Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

nn.LeakyReLU(negative_slope=0.2,

inplace=True)

 default_init_weights([self.conv1,

self.conv2, self.conv3, self.conv4,

self.conv5], 0.1)

 def forward(self, x):

 x1 = self.lrelu(self.conv1(x))

 x2 =

self.lrelu(self.conv2(torch.cat((x, x1),

1)))

 x3 =

self.lrelu(self.conv3(torch.cat((x, x1, x2),

1)))

 x4 =

self.lrelu(self.conv4(torch.cat((x, x1, x2,

x3), 1)))

 x5 = self.conv5(torch.cat((x, x1,

x2, x3, x4), 1))

 return x5 * 0.2 + x

class RRDB(nn.Module):

 def __init__(self, num_feat,

num_grow_ch=32):

 super(RRDB, self).__init__()

 self.rdb1 =

ResidualDenseBlock(num_feat, num_grow_ch)

 self.rdb2 =

ResidualDenseBlock(num_feat, num_grow_ch)

 self.rdb3 =

ResidualDenseBlock(num_feat, num_grow_ch)

 def forward(self, x):

 out = self.rdb1(x)

 out = self.rdb2(out)

 out = self.rdb3(out)

 return out * 0.2 + x

class RRDBNet(nn.Module):

 def __init__(self, num_in_ch,

num_out_ch, scale=4, num_feat=64,

num_block=23, num_grow_ch=32):

 super(RRDBNet, self).__init__()

 self.scale = scale

 if scale == 2:

 num_in_ch = num_in_ch * 4

 elif scale == 1:

 num_in_ch = num_in_ch * 16

 self.conv_first =

nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)

 self.body = make_layer(RRDB,

num_block, num_feat=num_feat,

num_grow_ch=num_grow_ch)

 self.conv_body = nn.Conv2d(num_feat,

num_feat, 3, 1, 1)

 # upsample

 self.conv_up1 = nn.Conv2d(num_feat,

num_feat, 3, 1, 1)

 self.conv_up2 = nn.Conv2d(num_feat,

num_feat, 3, 1, 1)

 self.conv_hr = nn.Conv2d(num_feat,

num_feat, 3, 1, 1)

 self.conv_last = nn.Conv2d(num_feat,

num_out_ch, 3, 1, 1)

 self.lrelu =

nn.LeakyReLU(negative_slope=0.2,

inplace=True)

 def forward(self, x):

 if self.scale == 2:

 feat = pixel_unshuffle(x,

scale=2)

 elif self.scale == 1:

 feat = pixel_unshuffle(x,

scale=4)

 else:

 feat = x

 feat = self.conv_first(feat)

 body_feat =

self.conv_body(self.body(feat))

 feat = feat + body_feat

 # upsample

 feat =

self.lrelu(self.conv_up1(F.interpolate(feat,

scale_factor=2, mode='nearest')))

 feat =

self.lrelu(self.conv_up2(F.interpolate(feat,

scale_factor=2, mode='nearest')))

 out =

self.conv_last(self.lrelu(self.conv_hr(feat)

))

 return out

This RRDB generator network can be used to do 2x
upscaling and 4x upscaling on each dimension (4x and 16x
resolution respectively).

The U-Net discriminator network used by Real-ESRGAN is
as follows:

class UNetDiscriminatorSN(nn.Module):

 def __init__(self, num_in_ch,

num_feat=64, skip_connection=True):

 super(UNetDiscriminatorSN,

self).__init__()

 self.skip_connection =

skip_connection

 norm = spectral_norm

 self.conv0 = nn.Conv2d(num_in_ch,

num_feat, kernel_size=3, stride=1,

padding=1)

 # downsample

 self.conv1 =

norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2,

1, bias=False))

 self.conv2 = norm(nn.Conv2d(num_feat

* 2, num_feat * 4, 4, 2, 1, bias=False))

 self.conv3 = norm(nn.Conv2d(num_feat

* 4, num_feat * 8, 4, 2, 1, bias=False))

 # upsample

 self.conv4 = norm(nn.Conv2d(num_feat

* 8, num_feat * 4, 3, 1, 1, bias=False))

 self.conv5 = norm(nn.Conv2d(num_feat

* 4, num_feat * 2, 3, 1, 1, bias=False))

Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

 self.conv6 = norm(nn.Conv2d(num_feat

* 2, num_feat, 3, 1, 1, bias=False))

 # extra convolutions

 self.conv7 =

norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1,

bias=False))

 self.conv8 =

norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1,

bias=False))

 self.conv9 = nn.Conv2d(num_feat, 1,

3, 1, 1)

 def forward(self, x):

 # downsample

 x0 = F.leaky_relu(self.conv0(x),

negative_slope=0.2, inplace=True)

 x1 = F.leaky_relu(self.conv1(x0),

negative_slope=0.2, inplace=True)

 x2 = F.leaky_relu(self.conv2(x1),

negative_slope=0.2, inplace=True)

 x3 = F.leaky_relu(self.conv3(x2),

negative_slope=0.2, inplace=True)

 # upsample

 x3 = F.interpolate(x3,

scale_factor=2, mode='bilinear',

align_corners=False)

 x4 = F.leaky_relu(self.conv4(x3),

negative_slope=0.2, inplace=True)

 if self.skip_connection:

 x4 = x4 + x2

 x4 = F.interpolate(x4,

scale_factor=2, mode='bilinear',

align_corners=False)

 x5 = F.leaky_relu(self.conv5(x4),

negative_slope=0.2, inplace=True)

 if self.skip_connection:

 x5 = x5 + x1

 x5 = F.interpolate(x5,

scale_factor=2, mode='bilinear',

align_corners=False)

 x6 = F.leaky_relu(self.conv6(x5),

negative_slope=0.2, inplace=True)

 if self.skip_connection:

 x6 = x6 + x0

 out = F.leaky_relu(self.conv7(x6),

negative_slope=0.2, inplace=True)

 out = F.leaky_relu(self.conv8(out),

negative_slope=0.2, inplace=True)

 out = self.conv9(out)

 return out

Before inference, the image needs to be preprocessed. The
image is padded if needed before feeding into the neural network
to make sure it is divisible.

def pre_process(self, img):

 img = torch.from_numpy(np.transpose(img,

(2, 0, 1))).float()

self.img = img.unsqueeze(0).to(self.device)

 if self.half:

 self.img = self.img.half()

 # pre_pad

 if self.pre_pad != 0:

 self.img = F.pad(self.img, (0,

self.pre_pad, 0, self.pre_pad), 'reflect')

After feeding into the neural network, the resulting image is
post-processed. The padding is removed.

def post_process(self):

 # remove prepad

 if self.pre_pad != 0:

 _, _, h, w = self.output.size()

 self.output = self.output[:, :, 0:h

- self.pre_pad * self.scale, 0:w -

self.pre_pad * self.scale]

 return self.output

Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

Figure 2 Top: original image, bottom: upscaled image by Real-ESRGAN

The original image is a low-quality, low-resolution image
with just 500x331 pixels, while the right is noticeably sharper
with a resolution of 2000x1404, a 4x increase in each dimension
or a 16x increase in total. Some fringing and minor artifacts are
still visible as a result of upscaling.

Figure 3 Top: original image, bottom: upscaled image

In this example, the artifacts are less visible while the details
are once again noticeably sharper. The better the source image,
the higher quality the resulting upscaled image is. That applies
to any method of image upscaling. The source image has a
resolution of 899x418 while the upscaled image has a resolution
of 3596x1672.

Makalah IF4073 Pemrosesan Citra Digital, Semester I Tahun 2024/2025

Figure 4 Top: original image, bottom: upscaled image

Once again, the image is vastly sharper than the source
image. JPEG compression artifacts which are visible in the
entirety of the source image are gone in the resulting image, but
there are some artifacts around the license plate and fringing in
the trees in the background. The details on the source image are
insufficient for the neural network to upscale the image. Hence,
the resulting image looks sharp with defined edges on the car but
the neural network has free rein on the license plate, as it has no
general idea what the original text could have been. This
“limitation” is extremely hard to overcome for any artificial
neural network, as the image lacks enough information for the
network.

The source image’s resolution is 517x352, while the
upscaled image is 2068x1408.

IV. CONCLUSION

In conclusion, generative adversarial networks can be used
to increase both image resolution and image quality. While both
don’t always go hand in hand (images can have higher quality
with lower resolutions), generative adversarial networks
improve on both with minimal artifacts resulting from model
inference. Of course, like any other solution, there are
limitations in which the artificial neural network simply cannot
overcome, as is the example in Figure 4. With artificial neural
networks capable of upscaling images, restoring old images can
be done without much hassle.

ACKNOWLEDGMENT

This paper would not have been brought to fruition without
resources provided the IF4073 Digital Image Processing class
with the guidance of Dr. Ir. Rinaldi, M.T as the lecturer of the
author in class.

The author would like to thank other brilliant programmers
and researchers in the world for sharing their knowledge and
findings, without it this paper would not have been complete.

REFERENCES

[1] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta,
A. et al. “Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network,” CVPR, 2017.

[2] Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., et al. “ESRGAN:
Enhanced Super-Resolution Generative Adversarial Networks,” ECCV,
2018.

[3] Wang, X., Xie, L., Dong, C., Shan, Y., “Real-ESRGAN: Training Real-
World Blind Super-Resolution with Pure Synthetic Data,” Applied
Research Center Tencent PCG, Shenzen Institutes of Advanced
Technology, University of Chinese Academy of Sciences, 2021.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 15 Januari 2025

Ammar Rasyad Chaeroel 13521136

